From a data.frame, runs stats on column of interest, and returns the ggplot for it.
Source:R/Utility_Behemoth.R
Utility_Behemoth.Rd
From a data.frame, runs stats on column of interest, and returns the ggplot for it.
Usage
Utility_Behemoth(
data,
var,
myfactor,
normality = NULL,
specifiedNormality = NULL,
correction = "none",
override = 0.05,
shape_palette,
fill_palette,
cex = 2,
size = 3,
corral.width = 1,
XAxisLevels = NULL
)
Arguments
- data
A data.frame object with metadata and data columns
- var
The column name for your variable of interest
- myfactor
The column name for your column containing your factor to group by
- normality
The Normality test to be applied, "dagostino" or "shapiro". Default NULL
- specifiedNormality
Default NULL leading to non-parametric, can switch by specifying "parametric" or "nonparametric".
- correction
Multiple comparison correction argument, default is set at "none"
- override
Internal, default 0.05. Set to 0.99 to force pairwise comparison in anova/kw.
- shape_palette
Palette corresponding to factor levels, designating each's shape
- fill_palette
Palette corresponding to factor levels, designating each's fill
- cex
The width of the ggbeeswarm bin
- size
Size for the ggbeeswarm circles.
- corral.width
width of corral bin argument for beeswarm.
- XAxisLevels
Provide list marker names correct order for x-axis reordering, default NULL
Examples
shape_ptype <- c("HU" = 22, "HEU-lo" = 21, "HEU-hi" = 21)
fill_ptype <- c("HU" = "white", "HEU-lo" = "darkgray", "HEU-hi" = "black")
File_Location <- system.file("extdata", package = "Coereba")
panelPath <- file.path(File_Location, "ILTPanelTetramer.csv")
binaryPath <- file.path(File_Location, "HeatmapExample.csv")
dataPath <- file.path(File_Location, "ReadyFileExample.csv")
panelData <- read.csv(panelPath, check.names=FALSE)
binaryData <- read.csv(binaryPath, check.names=FALSE)
dataData <- read.csv(dataPath, check.names=FALSE)
All <- Coereba_MarkerExpressions(data=dataData, binary=binaryData,
panel=panelData, starter="SparkBlue550")
Plot <- Utility_Behemoth(data=All, var="CD62L", myfactor="ptype",
normality="dagostino", correction="none", shape_palette=shape_ptype,
fill_palette=fill_ptype, XAxisLevels = c("HU", "HEU-lo", "HEU-hi"))